Backtest your trading strategies

Test, iterate, and optimize.

strategy_backtest.py

def generate_signals(data):

short_window = 14

long_window = 28


high_low = data["high"] - data["low"]

high_close = abs(data["high"] - data["close"].shift(1))

low_close = abs(data["low"] - data["close"].shift(1))


true_range = high_low.to_frame().join(high_close.to_frame()).join(low_close.to_frame()).max(axis=1)

data["atr"] = true_range.rolling(window=14, min_periods=1).mean()


data["middle_line"] = data["close"].ewm(span=20, adjust=False).mean()

data["upper_band"] = data["middle_line"] + (2 * data["atr"])

data["lower_band"] = data["middle_line"] - (2 * data["atr"])


data["signal"] = 0

data.loc[data["close"] > data["upper_band"], "signal"] = 1

data.loc[data["close"] < data["lower_band"], "signal"] = -1

Advanced Trading Strategy Tools

Everything you need to develop, test, and refine your quantitative trading strategies in one powerful platform.

Historical EOD Data

Access comprehensive end-of-day market data to thoroughly test your trading strategies across multiple timeframes and market conditions.

Python Integration

Write and test your strategies in Python with our robust online code. Levrage your favorite libraries like pandas and numpy.

Popular Templates

Get Popular Trading Strategy Templates and Start backtesting quickly using the presets or customising them for your use case.

Mr. X
CFO, Laxmi Chit Fundd

Backdrop is good 👍.

Ready to transform your trading strategies?